login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185731 Array by antidiagonals: T(n,k)=F*(k*n-n+3*k+13), where F = k*(k+1)*(k+2)*n*(n+1)*(n+2)/576. 2
1, 5, 4, 15, 21, 10, 35, 65, 55, 20, 70, 155, 175, 115, 35, 126, 315, 425, 375, 210, 56, 210, 574, 875, 925, 700, 350, 84, 330, 966, 1610, 1925, 1750, 1190, 546, 120, 495, 1530, 2730, 3570, 3675, 3010, 1890, 810, 165, 715, 2310, 4350, 6090, 6860, 6370, 4830, 2850, 1155, 220, 1001, 3355, 6600 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is the accumulation array of A185730.  (See A144112 for the definition of accumulation array.)

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened

FORMULA

T(n,k) = F*(k*n-n+3*k+13), where F = k*(k+1)*(k+2)*n*(n+1)*(n+2)/576.

EXAMPLE

Northwest corner:

1.....5....15....35....70

4.....21...65....155...315

10....55...175...425...875

20....115..375...925...1925

MATHEMATICA

f[n_, k_]:=k(1+k)n(1+n)(7+2k-n+k*n)/36;

TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]]  (* A185730 *)

Table[f[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten

s[n_, k_]:=Sum[f[i, j], {i, 1, n}, {j, 1, k}]; (* acc. arr. of {f(n, k)} *)

Factor[s[n, k]]  (* formula for A185731 *)

TableForm[Table[s[n, k], {n, 1, 10}, {k, 1, 15}]] (* array A185731 *)

Table[s[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten (* A185731 *)

CROSSREFS

Cf. A144112, A185730.

Sequence in context: A203976 A213566 A143129 * A177765 A337122 A282068

Adjacent sequences:  A185728 A185729 A185730 * A185732 A185733 A185734

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Feb 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 04:09 EDT 2021. Contains 343836 sequences. (Running on oeis4.)