login
A185732
Accumulation array of the polygonal number array (A086270), by antidiagonals.
3
1, 4, 2, 10, 9, 3, 20, 24, 15, 4, 35, 50, 42, 22, 5, 56, 90, 90, 64, 30, 6, 84, 147, 165, 140, 90, 39, 7, 120, 224, 273, 260, 200, 120, 49, 8, 165, 324, 420, 434, 375, 270, 154, 60, 9, 220, 450, 612, 672, 630, 510, 350, 192, 72, 10, 286, 605, 855, 984, 980, 861, 665, 440, 234, 85, 11, 364, 792, 1155, 1380, 1440, 1344, 1127, 840, 540, 280, 99, 12, 455, 1014, 1518, 1870, 2025, 1980, 1764, 1428, 1035, 650, 330, 114, 13, 560, 1274, 1950, 2464, 2750, 2790, 2604, 2240
OFFSET
1,2
COMMENTS
This is the (first) accumulation array of A086270; the second is A185733. See A144112 for the definition of accumulation array.
FORMULA
T(n,k) = k*(k+1)*n*(n+1)*(k*n-n+k+5)/12.
EXAMPLE
Northwest corner:
1....4....10...20...35
2....9....24...50...90
3....15...42...90...165
4....22...64...140..260
5....30...90...200..375
MATHEMATICA
f[n_, k_]:=k+n*k(k-1)/2;
TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]] (* Array A086270 *)
Table[f[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten (* A086270 *)
s[n_, k_]:=Sum[f[i, j], {i, 1, n}, {j, 1, k}]; (* acc. arr. of {f(n, k)} *)
Factor[s[n, k]] (* formula for A185732 *)
TableForm[Table[s[n, k], {n, 1, 10}, {k, 1, 15}]] (* acc. arr. A185732 *)
Table[s[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten (* A185732 *)
CROSSREFS
Rows 1 to 5: A000292, A006002, A059270, A177814, 5*A002411.
Columns 1 to 4: A000027, A055999, A067728, 10*A000096.
Sequence in context: A066579 A117821 A266851 * A121794 A250108 A210735
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 01 2011
STATUS
approved