login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213564
Rectangular array: (row n) = b**c, where b(h) = h*(h+1)/2, c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution.
5
1, 7, 4, 27, 21, 9, 77, 67, 43, 16, 182, 167, 127, 73, 25, 378, 357, 297, 207, 111, 36, 714, 686, 602, 467, 307, 157, 49, 1254, 1218, 1106, 917, 677, 427, 211, 64, 2079, 2034, 1890, 1638, 1302, 927, 567, 273, 81, 3289, 3234, 3054, 2730, 2282, 1757
OFFSET
1,2
COMMENTS
Principal diagonal: A213565
Antidiagonal sums: A101094
Row 1, (1,3,6,...)**(1,4,9,...): A005585
Row 2, (1,3,6,...)**(4,9,16,...): (k^5 +25*k^4 + 60*k^3 + 215*k^2 + 59*k)/60
Row 3, (1,3,6,...)**(9,16,25,...): (k^5 +35*k^4 + 30*k^3 + 505*k^2 + 149*k)/60
For a guide to related arrays, see A213500.
LINKS
FORMULA
T(n,k) = 6*T(n,k-1) - 15*T(n,k-2) + 20*T(n,k-3) - 15*T(n,k-4) + 6*T(n,k-5) - T(n,k-6).
G.f. for row n: f(x)/g(x), where f(x) = n^2 - (2*n^2 - 2n - 1)*x + ((n - 1)^2)*x^2 and g(x) = (1 - x)^6.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....7.....27....77....182
4....21....67....167...357
9....43....127...297...602
16...73....207...467...917
25...111...307...677...1302
36...157...427...927...1757
MATHEMATICA
b[n_] := n (n + 1)/2; c[n_] := n^2
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213564 *)
d = Table[t[n, n], {n, 1, 40}] (* A213565 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A101094 *)
CROSSREFS
Cf. A213500.
Sequence in context: A085047 A213831 A282361 * A282449 A282608 A070427
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jun 18 2012
STATUS
approved