login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213831
Rectangular array: (row n) = b**c, where b(h) = 2*h-1, c(h) = 3*n-5+3*h, n>=1, h>=1, and ** = convolution.
6
1, 7, 4, 24, 19, 7, 58, 51, 31, 10, 115, 106, 78, 43, 13, 201, 190, 154, 105, 55, 16, 322, 309, 265, 202, 132, 67, 19, 484, 469, 417, 340, 250, 159, 79, 22, 693, 676, 616, 525, 415, 298, 186, 91, 25, 955, 936, 868, 763, 633
OFFSET
1,2
COMMENTS
Principal diagonal: A213832.
Antidiagonal sums: A212560.
row 1, (1,3,5,7,...)**(1,4,7,10,...): A081436.
Row 2, (1,3,5,7,...)**(4,7,10,13,...): A162254.
Row 3, (1,3,5,7,...)**(7,10,13,16,...): (2*k^3 + 11*k^2 + k)/2.
For a guide to related arrays, see A212500.
FORMULA
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*((3*n-2) + 3*x - (3*n-5)*x^2) and g(x) = (1-x)^4.
Northwest corner (the array is read by falling antidiagonals):
EXAMPLE
1....7....24....58....115
4....19...51....106...190
7....31...78....154...265
10...43...105...202...340
13...55...132...250...415
MATHEMATICA
b[n_]:=2n-1; c[n_]:=3n-2;
t[n_, k_]:=Sum[b[k-i]c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:=Table[t[n, k], {k, 1, 60}] (* A213831 *)
Table[t[n, n], {n, 1, 40}] (* A213832 *)
s[n_]:=Sum[t[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A212560 *)
CROSSREFS
Sequence in context: A075536 A280336 A085047 * A282361 A213564 A282449
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jul 04 2012
STATUS
approved