login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213569
Principal diagonal of the convolution array A213568.
5
1, 7, 25, 71, 181, 435, 1009, 2287, 5101, 11243, 24553, 53223, 114661, 245731, 524257, 1114079, 2359261, 4980699, 10485721, 22020055, 46137301, 96468947, 201326545, 419430351, 872415181, 1811939275, 3758096329, 7784628167
OFFSET
1,2
COMMENTS
Create a triangle having first column T(n,1) = 2*n-1 for n = 1,2,3... The remaining terms are set to T(r,c) = T(r,c-1) + T(r-1,c-1). The sum of the terms in row n is a(n). The first five rows of the triangle are 1; 3,4; 5,8,12; 7,12,20,32; 9,16,28,48,80. - J. M. Bergot, Jan 17 2013
Starting at n=1, a(n) = (n+1)*2^n - 2*n - 1. A001787(n) = n*2^n. - J. M. Bergot, Jan 27 2013
FORMULA
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).
G.f.: x*(1 + x - 4*x^2)/( (1-2*x)^2*(1-x)^2 ).
a(n) = A001787(n+1)- 2*n - 1. - J. M. Bergot, Jan 22 2013
a(n) = Sum_{k=1..n} Sum_{i=0..n} (n-i) * C(k,i). - Wesley Ivan Hurt, Sep 19 2017
MAPLE
f:= gfun:-rectoproc({a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4),
a(1)=1, a(2)=7, a(3)=25, a(4)=71}, a(n), remember):
map(f, [$1..30]); # Robert Israel, Sep 19 2017
MATHEMATICA
(* First program *)
b[n_]:= 2^(n-1); c[n_]:= n;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213568 *)
d = Table[t[n, n], {n, 1, 40}] (* A213569 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A047520 *)
(* Additional programs *)
LinearRecurrence[{6, -13, 12, -4}, {1, 7, 25, 71}, 30] (* Harvey P. Dale, Jan 06 2015 *)
Table[2^n*(n+1) -(2*n+1), {n, 30}] (* G. C. Greubel, Jul 25 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(x*(1+x-4*x^2)/((1-2*x)^2*(1-x)^2)) \\ Altug Alkan, Sep 19 2017
(PARI) vector(30, n, 2^n*(n+1) -(2*n+1)) \\ G. C. Greubel, Jul 25 2019
(Magma) [2^n*(n+1) -(2*n+1): n in [1..30]]; // G. C. Greubel, Jul 25 2019
(Sage) [2^n*(n+1) -(2*n+1) for n in (1..30)] # G. C. Greubel, Jul 25 2019
(GAP) List([1..30], n-> 2^n*(n+1) -(2*n+1)); # G. C. Greubel, Jul 25 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 18 2012
STATUS
approved