login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Principal diagonal of the convolution array A213568.
5

%I #44 Sep 08 2022 08:46:02

%S 1,7,25,71,181,435,1009,2287,5101,11243,24553,53223,114661,245731,

%T 524257,1114079,2359261,4980699,10485721,22020055,46137301,96468947,

%U 201326545,419430351,872415181,1811939275,3758096329,7784628167

%N Principal diagonal of the convolution array A213568.

%C Create a triangle having first column T(n,1) = 2*n-1 for n = 1,2,3... The remaining terms are set to T(r,c) = T(r,c-1) + T(r-1,c-1). The sum of the terms in row n is a(n). The first five rows of the triangle are 1; 3,4; 5,8,12; 7,12,20,32; 9,16,28,48,80. - _J. M. Bergot_, Jan 17 2013

%C Starting at n=1, a(n) = (n+1)*2^n - 2*n - 1. A001787(n) = n*2^n. - _J. M. Bergot_, Jan 27 2013

%H Clark Kimberling, <a href="/A213569/b213569.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-13,12,-4).

%F a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).

%F G.f.: x*(1 + x - 4*x^2)/( (1-2*x)^2*(1-x)^2 ).

%F a(n) = A001787(n+1)- 2*n - 1. - _J. M. Bergot_, Jan 22 2013

%F a(n) = Sum_{k=1..n} Sum_{i=0..n} (n-i) * C(k,i). - _Wesley Ivan Hurt_, Sep 19 2017

%p f:= gfun:-rectoproc({a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4),

%p a(1)=1,a(2)=7,a(3)=25,a(4)=71},a(n),remember):

%p map(f, [$1..30]); # _Robert Israel_, Sep 19 2017

%t (* First program *)

%t b[n_]:= 2^(n-1); c[n_]:= n;

%t t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]

%t TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]

%t Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]

%t r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213568 *)

%t d = Table[t[n, n], {n, 1, 40}] (* A213569 *)

%t s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]

%t s1 = Table[s[n], {n, 1, 50}] (* A047520 *)

%t (* Additional programs *)

%t LinearRecurrence[{6,-13,12,-4},{1,7,25,71},30] (* _Harvey P. Dale_, Jan 06 2015 *)

%t Table[2^n*(n+1) -(2*n+1), {n,30}] (* _G. C. Greubel_, Jul 25 2019 *)

%o (PARI) my(x='x+O('x^30)); Vec(x*(1+x-4*x^2)/((1-2*x)^2*(1-x)^2)) \\ _Altug Alkan_, Sep 19 2017

%o (PARI) vector(30, n, 2^n*(n+1) -(2*n+1)) \\ _G. C. Greubel_, Jul 25 2019

%o (Magma) [2^n*(n+1) -(2*n+1): n in [1..30]]; // _G. C. Greubel_, Jul 25 2019

%o (Sage) [2^n*(n+1) -(2*n+1) for n in (1..30)] # _G. C. Greubel_, Jul 25 2019

%o (GAP) List([1..30], n-> 2^n*(n+1) -(2*n+1)); # _G. C. Greubel_, Jul 25 2019

%Y Cf. A001787, A213568, A213500.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Jun 18 2012