login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213572
Principal diagonal of the convolution array A213571.
4
1, 13, 82, 406, 1809, 7659, 31588, 128476, 518611, 2084809, 8361918, 33497010, 134094757, 536608663, 2146926472, 8588754808, 34357247847, 137433710421, 549744803650, 2199000186670, 8796044787481, 35184271425283
OFFSET
1,2
LINKS
FORMULA
a(n) = (2^(n+2)*(2^n-1) - (2^(n+1) + n + 1)*n)/2.
a(n) = 11*a(n-1) - 47*a(n-2) + 101*a(n-3) - 116*a(n-4) + 68*a(n-5) - 16*a(n-6).
G.f.: f(x)/g(x), where f(x) = x*(1 + 2*x - 14*x^2 + 14*x^3) and g(x) = (1 - 4*x)*((1 - x)^3)*(1 - 2*x)^2.
MATHEMATICA
(* First program *)
b[n_]:= n; c[n_]:= -1 + 2^n;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213571 *)
d = Table[t[n, n], {n, 1, 40}] (* A213572 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213581 *)
(* Additional programs *)
Table[2^(2*n+1) -2^n*(n+2)-Binomial[n+1, 2], {n, 30}] (* G. C. Greubel, Jul 25 2019 *)
PROG
(PARI) vector(30, n, 2^(2*n+1) -2^n*(n+2) -binomial(n+1, 2)) \\ G. C. Greubel, Jul 25 2019
(Magma) [2^(2*n+1) -2^n*(n+2) -Binomial(n+1, 2): n in [1..30]]; // G. C. Greubel, Jul 25 2019
(Sage) [2^(2*n+1) -2^n*(n+2) -binomial(n+1, 2) for n in (1..30)] # G. C. Greubel, Jul 25 2019
(GAP) List([1..30], n-> 2^(2*n+1) -2^n*(n+2) -Binomial(n+1, 2)); # G. C. Greubel, Jul 25 2019
CROSSREFS
Sequence in context: A082203 A367118 A101102 * A142085 A376916 A163688
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 19 2012
STATUS
approved