login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288116
Number of Dyck paths of semilength n such that each level has exactly nine peaks or no peaks.
2
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 9, 37, 101, 227, 487, 1019, 2015, 3724, 6528, 11438, 24758, 81106, 330810, 1542486, 7723906, 35765450, 142808117, 494994177, 1533142713, 4370885515, 11737660709, 30111369545, 74286138919, 177289070957, 416431652499
OFFSET
0,12
LINKS
MAPLE
b:= proc(n, k, j) option remember; `if`(n=j, 1, add(
b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k)
*binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))
end:
a:= n-> `if`(n=0, 1, b(n, 9$2)):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[j - 1, i - 1] + Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]];
a[n_] := If[n == 0, 1, b[n, 9, 9]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
CROSSREFS
Column k=9 of A288108.
Sequence in context: A299290 A304290 A244245 * A165394 A213570 A271908
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 05 2017
STATUS
approved