login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200815
Number of iterations of k -> d(k) until n reaches an odd prime.
3
0, 1, 0, 2, 0, 2, 1, 2, 0, 3, 0, 2, 2, 1, 0, 3, 0, 3, 2, 2, 0, 3, 1, 2, 2, 3, 0, 3, 0, 3, 2, 2, 2, 2, 0, 2, 2, 3, 0, 3, 0, 3, 3, 2, 0, 3, 1, 3, 2, 3, 0, 3, 2, 3, 2, 2, 0, 4, 0, 2, 3, 1, 2, 3, 0, 3, 2, 3, 0, 4, 0, 2, 3, 3, 2, 3, 0, 3, 1, 2, 0, 4, 2, 2, 2, 3, 0
OFFSET
3,4
COMMENTS
Csajbók and Kasza call this the tau-iteration length.
LINKS
Tímea Csajbók and János Kasza, Iterating the tau-function, Annales Univ. Sci. Budapest., Sec. Math. 35 (2011), pp. 83-93.
FORMULA
a(n) <= pi(log_2(n)) = A000720(A000523(n)).
a(n) = A036459(n)-1 = A060937(n)-2, for n >= 3. - Antti Karttunen, Oct 06 2017
EXAMPLE
d(10) = 4 and d(4) = 3, an odd prime, so a(10) = 2.
MATHEMATICA
nop[n_]:=Length[NestWhileList[DivisorSigma[0, #]&, n, #<3 || CompositeQ[ #]&]]-1; Array[ nop, 100, 3] (* Harvey P. Dale, Nov 14 2020 *)
PROG
(PARI) a(n)=my(i); while(!isprime(n), i++; n=numdiv(n)); i
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved