login
A200815
Number of iterations of k -> d(k) until n reaches an odd prime.
3
0, 1, 0, 2, 0, 2, 1, 2, 0, 3, 0, 2, 2, 1, 0, 3, 0, 3, 2, 2, 0, 3, 1, 2, 2, 3, 0, 3, 0, 3, 2, 2, 2, 2, 0, 2, 2, 3, 0, 3, 0, 3, 3, 2, 0, 3, 1, 3, 2, 3, 0, 3, 2, 3, 2, 2, 0, 4, 0, 2, 3, 1, 2, 3, 0, 3, 2, 3, 0, 4, 0, 2, 3, 3, 2, 3, 0, 3, 1, 2, 0, 4, 2, 2, 2, 3, 0
OFFSET
3,4
COMMENTS
Csajbók and Kasza call this the tau-iteration length.
LINKS
Tímea Csajbók and János Kasza, Iterating the tau-function, Annales Univ. Sci. Budapest., Sec. Math. 35 (2011), pp. 83-93.
FORMULA
a(n) <= pi(log_2(n)) = A000720(A000523(n)).
a(n) = A036459(n)-1 = A060937(n)-2, for n >= 3. - Antti Karttunen, Oct 06 2017
EXAMPLE
d(10) = 4 and d(4) = 3, an odd prime, so a(10) = 2.
MATHEMATICA
nop[n_]:=Length[NestWhileList[DivisorSigma[0, #]&, n, #<3 || CompositeQ[ #]&]]-1; Array[ nop, 100, 3] (* Harvey P. Dale, Nov 14 2020 *)
PROG
(PARI) a(n)=my(i); while(!isprime(n), i++; n=numdiv(n)); i
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved