login
A200818
Numbers k such that (2^k - k)*2^k - 1 is prime.
7
2, 4, 5, 8, 77, 377, 4547, 8248, 27502
OFFSET
1,1
COMMENTS
No more terms < 17000. - L. Joris Perrenet, Mar 17 2020
The generalization of this sequence is possible with the primes of the form (b^n +- k)*b^n +- 1.
EXAMPLE
4 is in the sequence because (2^4 - 4)*2^4 - 1 = 191 is prime.
MATHEMATICA
lst={}; Do[If[PrimeQ[(2^n - n)*2^n-1], AppendTo[lst, n]], {n, 10^3}]; lst
Select[Range[8300], PrimeQ[(2^#-#)2^#-1]&] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Aug 31 2024 *)
PROG
(PARI) is(n)=ispseudoprime((2^n-n)<<n-1) \\ Charles R Greathouse IV, Feb 17 2017
KEYWORD
nonn,hard,more
AUTHOR
Michel Lagneau, Nov 23 2011
EXTENSIONS
a(8) from L. Joris Perrenet, Mar 17 2020
a(9) from Michael S. Branicky, Jul 14 2023
STATUS
approved