login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200820
Expansion of e.g.f. 1/(1-arctan(1/sqrt(2)*x)^2) (even powers only).
1
1, 1, 2, 16, 120, 4296, 13056, 8004816, -344778624, 73663017984, -9783408639744, 2198402205799680, -511985055715983360, 152210366371207203840, -51349292670021684664320, 20385380417664342515466240
OFFSET
0,3
COMMENTS
This expansion has the form 1/(1-arctan(1/sqrt(2)*x)^2) = Sum_{n>=0} a(2*n)*x^(2*n)/(2n)!.
LINKS
FORMULA
a(n) = (2*n)!/2^n*Sum_{k=1..2*n} ((2*k)!*(-1)^((n+k))*Sum_{i=0..2*n-2*k} (2^(i)*Stirling1(i+2*k,2*k)*binomial(2*n-1,i+2*k-1))/(i+2*k)!)), n > 0, a(0)=1.
a(n) ~ -(-1)^n * (2*n)! / (n * (log(2*n))^3 * 2^(n-3)) * (1 - 3*(gamma + log(2)) / log(2*n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 11 2018
MAPLE
seq(coeff(series(factorial(n)*(1-arctan(1/sqrt(2)*x)^2)^(-1), x, n+1), x, n), n = 0 .. 30, 2); # Muniru A Asiru, Oct 07 2018
MATHEMATICA
Join[{1}, Table[((2*n)!/2^n)*Sum[(2*k)!*(-1)^(n + k)*Sum[(2^j* StirlingS1[j + 2*k, 2*k]*Binomial[2*n - 1, j + 2*k - 1])/(j + 2*k)!, {j, 0, 2*(n - k)}], {k, 1, 2*n}], {n, 1, 50}]] (* G. C. Greubel, Oct 05 2018 *)
PROG
(Maxima)
a(n):=if n=0 then 1 else (2*n)!/2^n*sum((2*k)!*(-1)^((n+k))*sum((2^(i)*stirling1(i+2*k, 2*k)*binomial(2*n-1, i+2*k-1))/(i+2*k)!, i, 0, 2*n-2*k), k, 1, 2*n);
(PARI) for(n=0, 30, print1(if(n==0, 1, ((2*n)!/2^n)*sum(k=1, 2*n, sum(j=0, 2*n-2*k, (2*k)!*(-1)^(n + k)*2^j*stirling(j + 2*k, 2*k, 1)*binomial(2*n - 1, j + 2*k - 1)/(j + 2*k)!) )), ", ")) \\ G. C. Greubel, Oct 05 2018
CROSSREFS
Sequence in context: A026158 A025185 A090672 * A209361 A341925 A229808
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Nov 23 2011
STATUS
approved