login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229808
G.f. A(x) satisfies: A(x) = x + 2*B(x)*C(x), where B(x) = x + 3*A(x)*C(x) and C(x) = x + 5*A(x)*B(x).
3
1, 2, 16, 122, 1096, 10322, 102856, 1054322, 11104336, 119175842, 1299844576, 14360860202, 160403229016, 1808192266322, 20545886851096, 235069897341122, 2705792876561056, 31312112470672322, 364079737402597936, 4251402314343575642, 49835252820257276776
OFFSET
1,2
FORMULA
G.f. A = A(x) satisfies:
(1) A = x + 2*x^2*(1+3*A)*(1+5*A)/(1-15*A^2)^2.
(2) A = x*(1+2*B)/(1-10*B^2) where B = x*(1+3*A)/(1-15*A^2) is the g.f. of A229809.
(3) A = x*(1+2*C)/(1-6*C^2) where C = x*(1+5*A)/(1-15*A^2) is the g.f. of A229810.
The g.f.s A = A(x) (A229808), B = B(x) (A229809), C = C(x) (A229810), satisfy:
A*B*C = (A^2 - x*A)/2 = (B^2 - x*B)/3 = (C^2 - x*C)/5.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 16*x^3 + 122*x^4 + 1096*x^5 + 10322*x^6 +...
Related series:
B(x) = x + 3*x^2 + 21*x^3 + 153*x^4 + 1401*x^5 + 13083*x^6 +...
C(x) = x + 5*x^2 + 25*x^3 + 215*x^4 + 1825*x^5 + 17525*x^6 +...
where A(x) = x + 2*B(x)*C(x).
(A(x)^2 - x*A(x))/2 = x^3 + 10*x^4 + 93*x^5 + 920*x^6 + 9305*x^7 + 97050*x^8 + 1031737*x^9 +...
PROG
(PARI) {a(n)=local(A=x+x^2, B=x+2*x^2, C=x+3*x^2); for(i=1, n, A=x+2*B*C+x*O(x^n); B=x+3*A*C+x*O(x^n); C=x+5*A*B+x*O(x^n)); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=x); for(i=1, n, A=x+2*x^2*(1+3*A)*(1+5*A)/(1-15*A^2 +x*O(x^n))^2); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A229809 (B(x)), A229810 (C(x)).
Sequence in context: A200820 A209361 A341925 * A301947 A027309 A241466
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 30 2013
STATUS
approved