login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308062
Number of ordered factorizations of n into Fibonacci numbers > 1.
1
1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 3, 1, 0, 2, 3, 0, 3, 0, 3, 1, 0, 0, 6, 1, 2, 1, 0, 0, 6, 0, 4, 0, 1, 0, 6, 0, 0, 2, 6, 0, 2, 0, 0, 3, 0, 0, 11, 0, 3, 0, 3, 0, 4, 1, 0, 0, 0, 0, 12, 0, 0, 2, 6, 2, 0, 0, 2, 0, 0, 0, 13, 0, 0, 3, 0, 0, 6, 0, 11, 1, 0, 0, 3, 0, 0, 0, 0, 1, 12
OFFSET
1,6
FORMULA
G.f. A(x) satisfies: A(x) = x + Sum_{k>=3} A(x^Fibonacci(k)).
MATHEMATICA
terms = 90; A[_] = 0; Do[A[x_] = x + Sum[A[x^Fibonacci[k]], {k, 3, 25}] + O[x]^(terms + 1) // Normal, terms + 1]; Rest[CoefficientList[A[x], x]]
f[n_] := f[n] = SeriesCoefficient[Sum[x^Fibonacci[k], {k, 3, 25}], {x, 0, n}]; a[n_] := If[n == 1, n, Sum[If[d < n, f[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 90}]
CROSSREFS
Cf. A000045, A010056, A065105 (positions of zeros), A065108 (positions of nonzero terms), A074206.
Sequence in context: A200815 A074398 A144765 * A147588 A307409 A378216
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 10 2019
STATUS
approved