login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308064
Number of triangles with perimeter n whose side lengths are square numbers.
4
0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0
OFFSET
1,99
LINKS
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * c(i) * c(k) * c(n-i-k), where c(n) is the characteristic function of squares (A010052).
MAPLE
N:= 100:
V:= Vector(N):
for a from 1 to floor(sqrt(N/3)) do
for b from a to floor(sqrt((N-a^2)/2)) do
R:= map(c -> a^2 + b^2 + c^2, [$b .. floor(sqrt(min(a^2+b^2-1, N-a^2-b^2)))]);
V[R]:= map(`+`, V[R], 1);
od od:
convert(V, list); # Robert Israel, Jan 01 2020
MATHEMATICA
Table[Sum[Sum[(Floor[Sqrt[i]] - Floor[Sqrt[i - 1]]) (Floor[Sqrt[k]] - Floor[Sqrt[k - 1]]) (Floor[Sqrt[n - k - i]] - Floor[Sqrt[n - k - i - 1]])*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
CROSSREFS
Cf. A010052.
Sequence in context: A374276 A037281 A143241 * A258825 A361162 A118626
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 10 2019
STATUS
approved