The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258825 a(n) = Number of times the k-th term is equal to k in the modified Collatz trajectory of n, when counting the initial term n as the term zero: n, A014682(n), A014682(A014682(n)), ... 4
 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,105 COMMENTS Number of times that k iterations of n under the modified Collatz function yield k for some k. - The original name of the sequence. This sequence uses the definition given in A014682: if n is odd, n -> (3n+1)/2 and if n is even, n -> n/2. 2 occurs first at a(105) and 3 occurs first at a(305). Do all nonnegative numbers appear? See A258828. LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 Index entries for sequences related to 3x+1 (or Collatz) problem EXAMPLE For n = 5, the Collatz function does the following: 5 -> 8 -> 4 -> 2 -> 1. Here, for k = 1, 2, 3, 4, applying k iterations to 5 does not yield k. So a(5) = 0. For n = 6, the Collatz function does the following: 6 -> 3 -> 5 -> 8 -> 4 -> 2 -> 1. After the 4th iteration, you arrive at 4. Since this is the only time this occurs, a(6) = 1. MATHEMATICA A258825[n_]:=Count[MapIndexed[{#1}==#2-1&, NestWhileList[If[OddQ[#], (3#+1)/2, #/2]&, n, #>1&]], True]; Array[A258825, 100] (* Paolo Xausa, Nov 06 2023 *) PROG (PARI) Tvect(n)=v=[n]; while(n!=1, if(n%2, k=(3*n+1)/2; v=concat(v, k); n=k); if(!(n%2), k=n/2; v=concat(v, k); n=k)); v for(n=1, 200, d=Tvect(n); c=0; for(i=1, #d, if(d[i]==i-1, c++)); print1(c, ", ")) (Scheme) (define (A258825 n) (let loop ((n n) (i 0) (s 0)) (if (= 1 n) (+ s (if (= i 1) 1 0)) (loop (A014682 n) (+ 1 i) (+ s (if (= i n) 1 0)))))) (define (A014682 n) (if (even? n) (/ n 2) (/ (+ n n n 1) 2))) ;; Antti Karttunen, Aug 18 2017 CROSSREFS Cf. A258769 (variant where the indexing starts from k=1), A014682, A070168. Sequence in context: A037281 A143241 A308064 * A361162 A118626 A277149 Adjacent sequences: A258822 A258823 A258824 * A258826 A258827 A258828 KEYWORD nonn AUTHOR Derek Orr, Jun 11 2015 EXTENSIONS Name changed by Antti Karttunen, Aug 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 04:45 EDT 2024. Contains 375985 sequences. (Running on oeis4.)