|
|
A374276
|
|
Number of representations of n by the quadratic form x^2 + 3*x*y + y^2 with 0 <= x <= y.
|
|
1
|
|
|
1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,122
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
121 = 0^2 + 3*0*11 + 11^2 = 3^2 + 3*3*7 + 7^2. So a(121) = 2.
|
|
MATHEMATICA
|
a[n_]:=Module[{m=Floor[Sqrt[n]]}, Sum[Sum[Boole[i^2+3i*j+j^2==n], {j, i, m}], {i, 0, m}]]; Array[a, 122, 0] (* Stefano Spezia, Jul 02 2024 *)
|
|
PROG
|
(PARI) a(n) = my(m=sqrtint(n)); sum(i=0, m, sum(j=i, m, i^2+3*i*j+j^2==n));
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|