|
|
A024920
|
|
a(n) = Sum_{k=1..n} (n-k) * floor(n/k).
|
|
1
|
|
|
0, 2, 7, 17, 29, 51, 71, 104, 138, 183, 220, 293, 340, 409, 486, 580, 646, 767, 843, 981, 1099, 1221, 1317, 1525, 1653, 1802, 1961, 2168, 2297, 2568, 2709, 2951, 3154, 3359, 3578, 3942, 4118, 4352, 4598, 4978, 5176, 5576, 5786, 6136, 6504, 6798, 7030, 7574, 7862, 8270, 8609
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ n^2 * (log(n) + 2*gamma - 1 - Pi^2/12), where gamma is the Euler-Mascheroni constant A001620. (End)
|
|
MAPLE
|
|
|
MATHEMATICA
|
Table[Sum[n*DivisorSigma[0, k] - DivisorSigma[1, k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, May 28 2021 *)
|
|
PROG
|
(PARI) a(n) = sum(k=1, n, (n-k)*floor(n/k)) \\ Michel Marcus, Mar 23 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|