login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024920
a(n) = Sum_{k=1..n} (n-k) * floor(n/k).
1
0, 2, 7, 17, 29, 51, 71, 104, 138, 183, 220, 293, 340, 409, 486, 580, 646, 767, 843, 981, 1099, 1221, 1317, 1525, 1653, 1802, 1961, 2168, 2297, 2568, 2709, 2951, 3154, 3359, 3578, 3942, 4118, 4352, 4598, 4978, 5176, 5576, 5786, 6136, 6504, 6798, 7030, 7574, 7862, 8270, 8609
OFFSET
1,2
LINKS
FORMULA
From Vaclav Kotesovec, May 28 2021: (Start)
a(n) = n*A006218(n) - A024916(n).
a(n) ~ n^2 * (log(n) + 2*gamma - 1 - Pi^2/12), where gamma is the Euler-Mascheroni constant A001620. (End)
MAPLE
A024920:=n->add((n-k)*floor(n/k), k=1..n): seq(A024920(n), n=1..80); # Wesley Ivan Hurt, Apr 02 2017
MATHEMATICA
Table[Sum [(n - k) Floor[n/k], {k, n}], {n, 51}] (* Michael De Vlieger, Apr 03 2017 *)
Table[Sum[n*DivisorSigma[0, k] - DivisorSigma[1, k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, May 28 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, (n-k)*floor(n/k)) \\ Michel Marcus, Mar 23 2013
(Python)
from math import isqrt
def A024920(n): return (s:=isqrt(n))**2*(s+1-(n<<1))+sum((q:=n//k)*((n<<2)-(k<<1)-q-1) for k in range(1, s+1))>>1 # Chai Wah Wu, Oct 23 2023
CROSSREFS
Sequence in context: A260801 A031377 A019357 * A091313 A049554 A019398
KEYWORD
nonn
STATUS
approved