OFFSET
0,1
COMMENTS
Also, decimal expansion of Integral_{x=0..1} (2 - (1+i)*x^(1-i) - (1-i)*x^(1+i))/(4 - 4*x) dx, where i is the imaginary unit.
FORMULA
Equals (1 + i)*(H(1-i) - i*H(1+i))/4, where H(z) is a harmonic number with complex argument.
Equals (Psi(i-1)-Psi(1)-i-1)/2-Pi*(i-1)*coth(Pi)/4), where Psi(x) is the digamma function. - Peter Luschny, Jan 27 2016
EXAMPLE
.8742700164962955060062206837771568219820392870536409438069097216969635...
MAPLE
((1+I)*(harmonic(1-I)-I*harmonic(1+I)))/4:
Re(evalf(%, 101)); # Peter Luschny, Jan 27 2016
MATHEMATICA
(1 + I)*(HarmonicNumber[1 - I] - I*HarmonicNumber[1 + I])/4 // Re // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Jan 26 2016 *)
PROG
(Sage)
# Warning: Floating point calculation. Adjust precision as needed
# and use some guard digits!
from mpmath import mp, chop, psi, pi, coth
mp.dps = 109; mp.pretty = True
chop((psi(0, I-1)-psi(0, 1)-I-1)/2-pi*(I-1)*coth(pi)/4) # Peter Luschny, Jan 27 2016
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bruno Berselli, Jan 26 2016
STATUS
approved