login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268046
Decimal expansion of Sum_{k>0} (k+1)/(k*((k+1)^2+1)).
2
8, 7, 4, 2, 7, 0, 0, 1, 6, 4, 9, 6, 2, 9, 5, 5, 0, 6, 0, 0, 6, 2, 2, 0, 6, 8, 3, 7, 7, 7, 1, 5, 6, 8, 2, 1, 9, 8, 2, 0, 3, 9, 2, 8, 7, 0, 5, 3, 6, 4, 0, 9, 4, 3, 8, 0, 6, 9, 0, 9, 7, 2, 1, 6, 9, 6, 9, 6, 3, 5, 4, 4, 7, 2, 7, 6, 2, 7, 6, 7, 3, 0, 3, 1, 9, 9, 1, 6, 6, 2, 2, 7, 3, 2, 9, 7, 9, 5, 6, 6
OFFSET
0,1
COMMENTS
Also, decimal expansion of Integral_{x=0..1} (2 - (1+i)*x^(1-i) - (1-i)*x^(1+i))/(4 - 4*x) dx, where i is the imaginary unit.
FORMULA
Equals (1 + i)*(H(1-i) - i*H(1+i))/4, where H(z) is a harmonic number with complex argument.
Equals (Psi(i-1)-Psi(1)-i-1)/2-Pi*(i-1)*coth(Pi)/4), where Psi(x) is the digamma function. - Peter Luschny, Jan 27 2016
EXAMPLE
.8742700164962955060062206837771568219820392870536409438069097216969635...
MAPLE
((1+I)*(harmonic(1-I)-I*harmonic(1+I)))/4:
Re(evalf(%, 101)); # Peter Luschny, Jan 27 2016
MATHEMATICA
(1 + I)*(HarmonicNumber[1 - I] - I*HarmonicNumber[1 + I])/4 // Re // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Jan 26 2016 *)
PROG
(Sage)
# Warning: Floating point calculation. Adjust precision as needed
# and use some guard digits!
from mpmath import mp, chop, psi, pi, coth
mp.dps = 109; mp.pretty = True
chop((psi(0, I-1)-psi(0, 1)-I-1)/2-pi*(I-1)*coth(pi)/4) # Peter Luschny, Jan 27 2016
CROSSREFS
Cf. A268086: (1-i)*(H(1-i)+i*H(1+i))/4.
Sequence in context: A326919 A158288 A193716 * A260060 A260800 A196914
KEYWORD
nonn,cons
AUTHOR
Bruno Berselli, Jan 26 2016
STATUS
approved