login
A072102
Decimal expansion of sum of reciprocal perfect powers (excluding 1).
8
8, 7, 4, 4, 6, 4, 3, 6, 8, 4, 0, 4, 9, 4, 4, 8, 6, 6, 6, 9, 4, 3, 5, 1, 3, 2, 0, 5, 9, 7, 3, 7, 3, 1, 6, 5, 9, 3, 5, 3, 3, 8, 4, 3, 1, 9, 2, 4, 2, 1, 4, 5, 7, 7, 6, 2, 5, 7, 8, 8, 2, 5, 3, 5, 0, 9, 3, 7, 0, 0, 6, 4, 1, 2, 9, 7, 2, 3, 6, 7, 6, 5, 9, 9, 3, 3, 2, 2, 6, 1, 7, 8, 5, 7, 5, 8, 0, 1, 6, 2, 8, 7, 7, 0, 6, 3, 4, 1, 9, 3, 6, 2, 5, 5, 9, 0, 5, 3, 0, 1
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 113.
LINKS
Eric Weisstein's World of Mathematics, Perfect Power.
FORMULA
From Amiram Eldar, Aug 20 2020: (Start)
Equals Sum_{k>=2} 1/A001597(k).
Equals Sum_{k>=2} mu(k)*(1-zeta(k)). (End)
EXAMPLE
0.874464368404944866694351320597373165935338431924214...
MATHEMATICA
RealDigits[Total[Block[{$MaxExtraPrecision = 10^3}, N[#, 120] & /@ Table[MoebiusMu[k] (1 - Zeta[k]), {k, 2, 10^3}]]]][[1]]
PROG
(PARI) cons()=my(bp=bitprecision(1.), s=0.); forsquarefree(k=2, bp, s+=moebius(k)*(1-zeta(k[1]))); s \\ Charles R Greathouse IV, Feb 08 2023
CROSSREFS
Cf. A001597.
Sequence in context: A260060 A260800 A196914 * A274442 A249136 A154815
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jun 18 2002
EXTENSIONS
Corrected by Eric W. Weisstein, May 06 2013
STATUS
approved