|
|
A072103
|
|
Sorted perfect powers a^b for a, b > 1 with duplication.
|
|
13
|
|
|
4, 8, 9, 16, 16, 25, 27, 32, 36, 49, 64, 64, 64, 81, 81, 100, 121, 125, 128, 144, 169, 196, 216, 225, 243, 256, 256, 256, 289, 324, 343, 361, 400, 441, 484, 512, 512, 529, 576, 625, 625, 676, 729, 729, 729, 784, 841, 900, 961, 1000, 1024, 1024, 1024, 1089
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If b is the largest integer such that n=a^b for some a > 1, then n occurs d(b)-1 times in this sequence (where d = A000005 is the number of divisors function). (This includes the case where b=1 and n does not occur in the sequence.) - M. F. Hasler, Jan 25 2015
|
|
LINKS
|
|
|
FORMULA
|
Sum_{i>=2} Sum_{j>=2} 1/i^j = 1.
|
|
EXAMPLE
|
(a,b) = (2,4) and (4,2) both yield 2^4 = 4^2 = 16, therefore 16 is listed twice.
Similarly, 64 is listed 3 times since (a,b) = (2,6), (4,3) and (8,2) all yield 64.
|
|
MAPLE
|
N:= 2000: # to get all entries <= N
sort([seq(seq(a^b, b = 2 .. floor(log[a](N))), a = 2 .. floor(sqrt(N)))]); # Robert Israel, Jan 25 2015
|
|
MATHEMATICA
|
nn=60; Take[Sort[#[[1]]^#[[2]]&/@Tuples[Range[2, nn], 2]], nn] (* Harvey P. Dale, Oct 03 2012 *)
|
|
PROG
|
(Haskell)
import Data.Set (singleton, findMin, deleteMin, insert)
a072103 n = a072103_list !! (n-1)
a072103_list = f 9 3 $ Set.singleton (4, 2) where
f zz z s
| xx < zz = xx : f zz z (Set.insert (x*xx, x) $ Set.deleteMin s)
| otherwise = zz : f (zz+2*z+1) (z+1) (Set.insert (z*zz, z) s)
where (xx, x) = Set.findMin s
for(n=1, 999, (e=ispower(n))||next; fordiv(e, d, d>1 && print1(n", "))) \\ M. F. Hasler, Jan 25 2015
(Python)
import numpy
from math import isqrt
upto = 1090
for m in range(2, isqrt(upto)+1):
k = 2
while m**k < upto:
k += 1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Offset corrected and examples added by M. F. Hasler, Jan 25 2015
|
|
STATUS
|
approved
|
|
|
|