login
A237882
Numbers k such that LR0(k) > LR1(k), where LR0(k) = A087117(k) is the length of the longest run of zeros in the binary representation of k, LR1(k) = A038374(k) is the length of the longest run of ones.
2
0, 4, 8, 9, 16, 17, 18, 20, 24, 32, 33, 34, 35, 36, 37, 40, 41, 48, 49, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 80, 81, 82, 84, 88, 96, 97, 98, 99, 104, 112, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 144, 145, 146, 148, 149, 152, 160
OFFSET
1,2
LINKS
MATHEMATICA
klrQ[n_]:=With[{sidn2=Split[IntegerDigits[n, 2]]}, Max[Length/@Select[sidn2, #[[1]]==0&]]>Max[Length/@Select[sidn2, #[[1]]==1&]]]; Select[Range[ 0, 200], klrQ] (* Harvey P. Dale, May 05 2018 *)
PROG
(Python)
for n in range(1000):
b = bin(n).lstrip("0b")
L0 = L1 = 0
s = '0'
if n==0: b=s
while b.find(s)>=0:
s += '0'
L0 += 1
s = '1'
while b.find(s)>=0:
s += '1'
L1 += 1
if L0>L1: print str(n)+', ',
CROSSREFS
Cf. A090050 (numbers k such that LR0(k) = LR1(k)).
Cf. A237883 (numbers k such that LR0(k) < LR1(k)).
Sequence in context: A018196 A072103 A004756 * A153034 A106840 A242663
KEYWORD
nonn,base
AUTHOR
Alex Ratushnyak, Feb 14 2014
STATUS
approved