login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237885
a(n) is the number of ways that 4n can be written as p+q (p>q) with p, q, (p-q)/2, 4n-(p-q)/2 all prime numbers.
3
0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, 0, 4, 0, 0, 2, 0, 1, 1, 0, 1, 2, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 0, 5, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 3, 0, 0, 2, 0, 1, 3, 0, 0, 3, 1, 0, 3
OFFSET
1,12
COMMENTS
2n=q+(p-q)/2; 6n=p+(4n-(p-q)/2).
Number of ways that 2*n can be written as a+b with a<b and a, b, a+2*b and 2*a+b all prime. - Robert Israel, Jun 07 2022
EXAMPLE
When n=4, 4n=16, 16=13+3, (13-3)/2=5, 16-5=11, all four numbers {3, 5, 11, 13} are prime numbers. There is no other such four number set with this property, so a(4)=1;
When n=30, 4n=120.
120=113+7, (113-7)/2=53, 120-53=67. Set 1: {7, 53, 67, 113}.
120=109+11, (109-11)/2=49=7*7, X
120=107+13, (107-13)/2=47, 120-47=73. Set 2: {13, 47, 73, 107}.
120=103+17, (103-17)/2=43, 120-43=77=7*11, X
120=101+19, (101-19)/2=41, 120-41=79. Set 3: {19, 41, 79, 101}.
120=97+23, (97-23)/2=37, 120-37=83. Set 4: {23, 37, 83, 97}.
120=89+31, (89-31)/2=29, 120-29=91=7*13, X
120=83+37, same with Set 4.
120=79+41, same with Set 3.
120=73+47, same with Set 2.
120=67+53, same with Set 1.
120=61+59, (61-59)/2=1, X
So four acceptable sets have been found, and therefore a(30)=4.
MAPLE
N:= 100: # for a(1)..a(N)
V:= Vector(N):
P:= select(isprime, [seq(i, i=3..2*N, 2)]):
nP:= nops(P):
for i from 1 to nP do
p:= P[i];
for j from i+1 to nP do
q:= P[j];
if p+q > 2*N then break fi;
r:= (p+q)/2;
if isprime(p+2*q) and isprime(2*p+q) then
V[r]:= V[r]+1
fi
od
od:
convert(V, list); # Robert Israel, Jun 08 2022
MATHEMATICA
Table[qn = 4*n; p = 2*n - 1; ct = 0; While[p = NextPrime[p]; p < qn, q = qn - p; If[PrimeQ[q] && PrimeQ[(p - q)/2] && PrimeQ[qn - (p - q)/2], ct++]]; ct/2, {n, 1, 87}]4*n-1
PROG
(PARI) a(n)=my(s); forprime(p=2, n, if(isprime(2*n-p) && isprime(2*n+p) && isprime(4*n-p), s++)); s \\ Charles R Greathouse IV, Mar 15 2015
CROSSREFS
Sequence in context: A016424 A337985 A108913 * A341775 A139032 A182035
KEYWORD
nonn,easy
AUTHOR
Lei Zhou, Feb 14 2014
STATUS
approved