login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196398
Decimal expansion of the positive number x satisfying e^x=4*cos(x).
5
9, 0, 4, 7, 8, 8, 2, 1, 7, 8, 7, 3, 0, 1, 8, 8, 5, 3, 4, 7, 4, 0, 2, 1, 3, 5, 9, 9, 3, 7, 0, 4, 3, 4, 8, 8, 2, 7, 9, 6, 4, 3, 1, 3, 6, 3, 2, 1, 4, 8, 0, 1, 1, 0, 0, 5, 9, 4, 6, 9, 6, 8, 3, 5, 9, 7, 9, 9, 3, 2, 2, 4, 4, 3, 9, 3, 5, 7, 4, 9, 4, 5, 4, 6, 2, 6, 4, 1, 3, 7, 1, 0, 1, 5, 3, 5, 9, 5, 8, 3, 7
OFFSET
0,1
EXAMPLE
0.90478821787301885347402135993704348827...
MATHEMATICA
Plot[{E^x, 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, Pi/2}]
t = x /.
FindRoot[E^x == 2 Cos[x], {x, .5, .6}, WorkingPrecision -> 100]; RealDigits[t] (* A196396 *)
t = x /.
FindRoot[E^x == 3 Cos[x], {x, .7, .8}, WorkingPrecision -> 100]; RealDigits[t] (* A196397 *)
t = x /.
FindRoot[E^x == 4 Cos[x], {x, .8, 1.0}, WorkingPrecision -> 100]; RealDigits[t] (* A196398 *)
t = x /.
FindRoot[E^x == 5 Cos[x], {x, .8, 1.0}, WorkingPrecision -> 100]; RealDigits[t] (* A196399 *)
t = x /.
FindRoot[E^x == 6 Cos[x], {x, 1.0, 1.1}, WorkingPrecision -> 100]; RealDigits[t] (* A196400 *)
CROSSREFS
Sequence in context: A195692 A021088 A021529 * A192932 A361061 A301865
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
EXTENSIONS
a(100) corrected by Georg Fischer, Jul 30 2021
STATUS
approved