login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361061
Decimal expansion of the asymptotic mean of A000005(k)/A073184(k), the ratio between the number of divisors and the number of cubefree divisors.
3
1, 1, 0, 9, 0, 4, 9, 6, 7, 7, 9, 9, 8, 7, 3, 7, 3, 3, 6, 3, 4, 5, 2, 8, 8, 5, 8, 7, 7, 8, 1, 6, 7, 1, 7, 6, 6, 0, 0, 9, 7, 5, 2, 6, 2, 9, 6, 7, 7, 3, 0, 3, 9, 8, 3, 7, 1, 4, 2, 4, 9, 9, 7, 3, 5, 8, 1, 3, 2, 8, 8, 6, 7, 6, 1, 5, 7, 7, 5, 0, 9, 3, 4, 8, 7, 3, 2, 1, 3, 8, 2, 6, 8, 1, 7, 8, 1, 0, 0, 9, 4, 1, 3, 0, 8
OFFSET
1,4
FORMULA
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A000005(k)/A073184(k).
Equals Product_{p prime} (1 + 1/(3*(p-1)*p^2)).
EXAMPLE
1.109049677998737336345288587781671766009752629677303...
MATHEMATICA
$MaxExtraPrecision = 1000; m = 1000; f[p_] := 1 + 1/(3*(p - 1)*p^2); c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; RealDigits[Exp[NSum[Indexed[c, n]*(PrimeZetaP[n]), {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
PROG
(PARI) prodeulerrat(1 + 1/(3*(p-1)*p^2))
CROSSREFS
Cf. A000005, A073184, A361062 (mean of the inverse ratio).
Cf. A307869 (squarefree analog), A308043.
Sequence in context: A021529 A196398 A192932 * A301865 A370705 A309605
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Mar 01 2023
STATUS
approved