login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309605
Digits of the 10-adic integer (61/9)^(1/3).
3
9, 0, 5, 0, 5, 4, 7, 1, 9, 1, 6, 0, 9, 8, 5, 7, 1, 0, 7, 3, 1, 0, 9, 5, 1, 4, 9, 9, 5, 7, 9, 3, 0, 1, 1, 9, 0, 1, 4, 1, 4, 0, 6, 4, 4, 1, 8, 0, 0, 1, 7, 6, 9, 1, 5, 3, 8, 1, 4, 2, 6, 7, 1, 3, 3, 9, 8, 0, 4, 5, 3, 7, 2, 5, 2, 7, 5, 5, 4, 6, 1, 0, 0, 2, 2, 3, 2, 0, 7, 3, 4, 2, 7, 7, 1, 0, 3, 1, 0, 9
OFFSET
0,1
LINKS
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 - 61) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.
EXAMPLE
9^3 == 9 (mod 10).
9^3 == 29 (mod 10^2).
509^3 == 229 (mod 10^3).
509^3 == 2229 (mod 10^4).
50509^3 == 22229 (mod 10^5).
450509^3 == 222229 (mod 10^6).
PROG
(PARI) N=100; Vecrev(digits(lift(chinese(Mod((61/9+O(2^N))^(1/3), 2^N), Mod((61/9+O(5^N))^(1/3), 5^N)))), N)
(Ruby)
def A309605(n)
ary = [9]
a = 9
n.times{|i|
b = (a + 7 * (9 * a ** 3 - 61)) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A309605(100)
CROSSREFS
Sequence in context: A361061 A301865 A370705 * A010770 A021921 A374751
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 09 2019
STATUS
approved