login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309643
Digits of the 10-adic integer (-61/9)^(1/3).
3
1, 9, 4, 9, 4, 5, 2, 8, 0, 8, 3, 9, 0, 1, 4, 2, 8, 9, 2, 6, 8, 9, 0, 4, 8, 5, 0, 0, 4, 2, 0, 6, 9, 8, 8, 0, 9, 8, 5, 8, 5, 9, 3, 5, 5, 8, 1, 9, 9, 8, 2, 3, 0, 8, 4, 6, 1, 8, 5, 7, 3, 2, 8, 6, 6, 0, 1, 9, 5, 4, 6, 2, 7, 4, 7, 2, 4, 4, 5, 3, 8, 9, 9, 7, 7, 6, 7, 9, 2, 6, 5, 7, 2, 2, 8, 9, 6, 8, 9, 0
OFFSET
0,2
LINKS
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 + 61) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.
EXAMPLE
1^3 == 1 (mod 10).
91^3 == 71 (mod 10^2).
491^3 == 771 (mod 10^3).
9491^3 == 7771 (mod 10^4).
49491^3 == 77771 (mod 10^5).
549491^3 == 777771 (mod 10^6).
PROG
(PARI) N=100; Vecrev(digits(lift(chinese(Mod((-61/9+O(2^N))^(1/3), 2^N), Mod((-61/9+O(5^N))^(1/3), 5^N)))), N)
(Ruby)
def A309643(n)
ary = [1]
a = 1
n.times{|i|
b = (a + 7 * (9 * a ** 3 + 61)) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A309643(100)
CROSSREFS
Sequence in context: A200296 A021517 A154977 * A203082 A258414 A237185
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 11 2019
STATUS
approved