login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309641
Digits of the 10-adic integer (-11/3)^(1/3).
3
7, 6, 7, 7, 4, 1, 3, 1, 6, 8, 2, 6, 7, 3, 8, 9, 9, 8, 6, 7, 4, 6, 6, 4, 4, 4, 9, 1, 1, 0, 9, 0, 8, 2, 6, 7, 0, 5, 6, 0, 0, 1, 6, 6, 9, 8, 5, 7, 2, 3, 0, 4, 8, 4, 0, 6, 7, 4, 6, 2, 6, 8, 5, 1, 0, 2, 9, 8, 0, 8, 8, 5, 8, 5, 2, 5, 0, 9, 2, 2, 8, 7, 5, 0, 6, 5, 6, 1, 9, 1, 8, 1, 0, 1, 6, 4, 4, 8, 0, 7
OFFSET
0,1
LINKS
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 + 11) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.
EXAMPLE
7^3 == 3 (mod 10).
67^3 == 63 (mod 10^2).
767^3 == 663 (mod 10^3).
7767^3 == 6663 (mod 10^4).
47767^3 == 66663 (mod 10^5).
147767^3 == 666663 (mod 10^6).
PROG
(PARI) N=100; Vecrev(digits(lift(chinese(Mod((-11/3+O(2^N))^(1/3), 2^N), Mod((-11/3+O(5^N))^(1/3), 5^N)))), N)
(Ruby)
def A309641(n)
ary = [7]
a = 7
n.times{|i|
b = (a + 9 * (3 * a ** 3 + 11)) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A309641(100)
CROSSREFS
Sequence in context: A276792 A188943 A093349 * A020789 A153857 A093813
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 11 2019
STATUS
approved