login
A309642
Digits of the 10-adic integer (7/3)^(1/3).
3
9, 8, 9, 5, 3, 2, 3, 2, 4, 1, 6, 2, 9, 4, 0, 2, 1, 9, 1, 1, 8, 3, 0, 8, 2, 5, 0, 7, 5, 0, 5, 2, 5, 3, 6, 7, 4, 5, 2, 9, 9, 0, 0, 7, 2, 2, 4, 5, 9, 7, 0, 1, 7, 6, 9, 4, 0, 1, 7, 0, 7, 0, 6, 9, 8, 1, 5, 9, 7, 0, 8, 2, 8, 6, 8, 0, 4, 1, 8, 7, 5, 9, 6, 4, 7, 2, 7, 6, 4, 4, 4, 3, 4, 0, 0, 5, 8, 8, 9, 0
OFFSET
0,1
LINKS
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 3 * b(n-1)^3 - 7 mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.
EXAMPLE
9^3 == 9 (mod 10).
89^3 == 69 (mod 10^2).
989^3 == 669 (mod 10^3).
5989^3 == 6669 (mod 10^4).
35989^3 == 66669 (mod 10^5).
235989^3 == 666669 (mod 10^6).
PROG
(PARI) N=100; Vecrev(digits(lift(chinese(Mod((7/3+O(2^N))^(1/3), 2^N), Mod((7/3+O(5^N))^(1/3), 5^N)))), N)
(Ruby)
def A309642(n)
ary = [9]
a = 9
n.times{|i|
b = (a + 3 * a ** 3 - 7) % (10 ** (i + 2))
ary << (b - a) / (10 ** (i + 1))
a = b
}
ary
end
p A309642(100)
CROSSREFS
Sequence in context: A243277 A200003 A159590 * A146484 A116695 A109940
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 11 2019
STATUS
approved