login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200003 Decimal expansion of greatest x satisfying x^2+cos(x)=3*sin(x). 3
9, 8, 9, 4, 5, 0, 0, 1, 4, 4, 9, 3, 9, 4, 9, 1, 6, 7, 4, 8, 9, 7, 8, 8, 3, 3, 2, 6, 9, 5, 7, 1, 4, 9, 7, 5, 5, 4, 8, 1, 1, 9, 5, 4, 8, 4, 6, 2, 4, 1, 2, 6, 4, 4, 4, 2, 2, 0, 0, 1, 6, 0, 8, 4, 4, 9, 9, 6, 8, 2, 5, 8, 2, 7, 1, 5, 4, 1, 8, 2, 4, 3, 0, 4, 3, 1, 8, 3, 2, 4, 6, 9, 5, 2, 6, 3, 9, 1, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x:  0.45041223638324913376478190783839778...

greatest x: 0.989450014493949167489788332695714...

MATHEMATICA

a = 2; b = 1; c = 3;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -.1, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]

RealDigits[r]  (* A199967 *)

r = x /. FindRoot[f[x] == g[x], {x, .98, .99}, WorkingPrecision -> 110]

RealDigits[r]  (* A200003 *)

CROSSREFS

Cf. A199949.

Sequence in context: A269222 A201994 A243277 * A159590 A146484 A116695

Adjacent sequences:  A200000 A200001 A200002 * A200004 A200005 A200006

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 07:43 EST 2018. Contains 299447 sequences. (Running on oeis4.)