This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200003 Decimal expansion of greatest x satisfying 2*x^2 + cos(x) = 3*sin(x). 3
 9, 8, 9, 4, 5, 0, 0, 1, 4, 4, 9, 3, 9, 4, 9, 1, 6, 7, 4, 8, 9, 7, 8, 8, 3, 3, 2, 6, 9, 5, 7, 1, 4, 9, 7, 5, 5, 4, 8, 1, 1, 9, 5, 4, 8, 4, 6, 2, 4, 1, 2, 6, 4, 4, 4, 2, 2, 0, 0, 1, 6, 0, 8, 4, 4, 9, 9, 6, 8, 2, 5, 8, 2, 7, 1, 5, 4, 1, 8, 2, 4, 3, 0, 4, 3, 1, 8, 3, 2, 4, 6, 9, 5, 2, 6, 3, 9, 1, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A199949 for a guide to related sequences. The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 EXAMPLE least x:  0.45041223638324913376478190783839778... greatest x: 0.989450014493949167489788332695714... MATHEMATICA a = 2; b = 1; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -.1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110] RealDigits[r]  (* A199967 *) r = x /. FindRoot[f[x] == g[x], {x, .98, .99}, WorkingPrecision -> 110] RealDigits[r]  (* A200003 *) PROG (PARI) a=2; b=1; c=3; solve(x=0.75, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018 CROSSREFS Cf. A199949. Sequence in context: A269222 A201994 A243277 * A159590 A146484 A116695 Adjacent sequences:  A200000 A200001 A200002 * A200004 A200005 A200006 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 12 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 03:55 EST 2019. Contains 319184 sequences. (Running on oeis4.)