login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200002
G.f.: exp( Sum_{n>=1} C(2*n,n)^n/2^n * x^n/n ).
4
1, 1, 5, 338, 375502, 6351970709, 1620698781098852, 6259260939361008796229, 367534769386519350929158503892, 329474737492618783473185792974307067503, 4525697838840190793599072589249813785373031191426, 955617474162634862818320009634143510233705849191099879550608
OFFSET
0,3
COMMENTS
Compare to the g.f. C(x) = 1 + x*C(x)^2 of the Catalan numbers (A000108), where C(x) = exp( Sum_{n>=1} C(2*n,n)/2 * x^n/n ).
FORMULA
Conjecture: Limit n->infinity a(n)^(1/n^2) = 4. - Vaclav Kotesovec, Mar 06 2014
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 338*x^3 + 375502*x^4 + 6351970709*x^5 +...
where
log(A(x)) = x + 3^2*x^2/2 + 10^3*x^3/3 + 35^4*x^4/4 + 126^5*x^5/5 + 462^6*x^6/6 + 1716^7*x^7/7 +...+ A001700(n+1)^n*x^n/n +...
MATHEMATICA
nmax = 10; b = ConstantArray[0, nmax+1]; b[[1]] = 1; Do[b[[n+1]] = 1/n*Sum[Binomial[2*k, k]^k/2^k * b[[n-k+1]], {k, 1, n}], {n, 1, nmax}]; b (* Vaclav Kotesovec, Mar 06 2014 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, binomial(2*m, m)^m/2^m*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 05 2011
STATUS
approved