login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224732
G.f.: exp( Sum_{n>=1} binomial(2*n,n)^n * x^n/n ).
6
1, 2, 20, 2704, 6008032, 203263062688, 103724721990326528, 801185400238209125917312, 94088900962948953837864576996352, 168691065596220817138271126002845218561536, 4634314586972355372645450331391809316221983940020224
OFFSET
0,2
LINKS
FORMULA
Logarithmic derivative yields A224733.
a(n) ~ exp(-1/8) * 2^(2*n^2) / (Pi^(n/2) * n^(1 + n/2)). - Vaclav Kotesovec, Jan 26 2015
a(n) ~ (binomial(2*n,n))^n / n. - Vaclav Kotesovec, Jan 26 2015
EXAMPLE
G.f.: A(x) = 1 + 2*x + 20*x^2 + 2704*x^3 + 6008032*x^4 + 203263062688*x^5 +...
where
log(A(x)) = 2*x + 6^2*x^2/2 + 20^3*x^3/3 + 70^4*x^4/4 + 252^5*x^5/5 + 924^6*x^6/6 + 3432^7*x^7/7 + 12870^8*x^8/8 +...+ A000984(n)^n*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, binomial(2*k, k)^k*x^k/k)+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 16 2013
STATUS
approved