|
|
A224735
|
|
G.f.: exp( Sum_{n>=1} binomial(2*n,n)^3 * x^n/n ).
|
|
3
|
|
|
1, 8, 140, 3616, 116542, 4316080, 175593800, 7640774080, 349626142909, 16632958651688, 816163494236860, 41069537125459360, 2110206360805542510, 110346590629125981872, 5857345961837113457864, 314962180518584299711424, 17128125582951726423704502, 940726748732537798295599280
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..17.
|
|
FORMULA
|
Logarithmic derivative yields A002897.
|
|
EXAMPLE
|
G.f.: A(x) = 1 + 8*x + 140*x^2 + 3616*x^3 + 116542*x^4 + 4316080*x^5 +...
where
log(A(x)) = 2^3*x + 6^3*x^2/2 + 20^3*x^3/3 + 70^3*x^4/4 + 252^3*x^5/5 + 924^3*x^6/6 + 3432^3*x^7/7 + 12870^3*x^8/8 +...+ A000984(n)^3*x^n/n +...
|
|
PROG
|
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, binomial(2*k, k)^3*x^k/k)+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
|
|
CROSSREFS
|
Cf. A224732, A224734, A224736, A002897, A000984.
Sequence in context: A212442 A185248 A228867 * A090931 A239757 A295242
Adjacent sequences: A224732 A224733 A224734 * A224736 A224737 A224738
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul D. Hanna, Apr 16 2013
|
|
STATUS
|
approved
|
|
|
|