login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185248
Expansion of 3F2( (1/2, 3/2, 5/2); (3, 5))(64 x)
2
1, 8, 140, 3360, 97020, 3171168, 113369256, 4338459840, 175165316040, 7385525026880, 322747443674656, 14534919841012480, 671591162296782000, 31725844951938480000, 1527939354203180010000, 74847268228930016688000, 3722092276301165621547000
OFFSET
0,2
COMMENTS
Generalization of formula for A172392.
Combinatorial interpretation welcome.
LINKS
FORMULA
D-finite with recurrence +n*(n+4)*(n+2)*a(n) -8*(2*n+3)*(2*n+1)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
From Vaclav Kotesovec, Feb 17 2024: (Start)
a(n) = 16 * (2*n+3) * (2*n+1)^2 * (2*n)!^3 / (n!^4 * (n+2)! * (n+4)!).
a(n) ~ 2^(6*n + 7) / (Pi^(3/2) * n^(9/2)). (End)
MATHEMATICA
CoefficientList[Series[HypergeometricPFQ[{1/2, 3/2, 5/2}, {3, 5}, 64 x], {x, 0, 20}], x]
Table[16 * (2*n+3) * (2*n+1)^2 * (2*n)!^3 / (n!^4 * (n+2)! * (n+4)!), {n, 0, 20}] (* Vaclav Kotesovec, Feb 17 2024 *)
CROSSREFS
Cf. A172392.
Sequence in context: A092703 A234353 A212442 * A228867 A224735 A090931
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Feb 15 2011
STATUS
approved