login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228867
G.f. A(x) satisfies: A(x) = -x + x^2 + A(A(x)) + Series_Reversion(A(A(x))).
0
1, 1, 8, 140, 3536, 111118, 4067460, 167387778, 7579673514, 372383647086, 19656714142024, 1107002518847134, 66161264225994340, 4179178067931209524, 278086164995822234072, 19439660328872258046471, 1424349675827697250143308, 109166829826333936529736762
OFFSET
1,3
COMMENTS
Compare to the Catalan function C(x) that (trivially) satisfies:
C(x) = -x + x^2 + C(x) + Series_Reversion(C(x)).
EXAMPLE
G.f.: A(x) = x + x^2 + 8*x^3 + 140*x^4 + 3536*x^5 + 111118*x^6 +...
where
A(A(x)) = x + 2*x^2 + 18*x^3 + 321*x^4 + 8144*x^5 + 256404*x^6 + 9395688*x^7 + 386935778*x^8 + 17530417564*x^9 +...
Let the series reversion of A(x) be denoted by G(x), which begins
G(x) = x - x^2 - 6*x^3 - 105*x^4 - 2658*x^5 - 83608*x^6 - 3062080*x^7 -...
then
G(G(x)) = x - 2*x^2 - 10*x^3 - 181*x^4 - 4608*x^5 - 145286*x^6 - 5328228*x^7 - 219548000*x^8 - 9950744050*x^9 +...
so that A(x) = -x + x^2 + A(A(x)) + G(G(x)).
PROG
(PARI) {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=-x+x^2 + subst(A, x, A) + serreverse(subst(A, x, A)) +x*O(x^n)); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A234353 A212442 A185248 * A224735 A090931 A367199
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 06 2013
STATUS
approved