

A228870


Numbers n such that 2 * (1^n + 2^n + 3^n + ... + n^n) is not 0 (mod n).


4



6, 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 60, 66, 72, 78, 80, 84, 90, 96, 100, 102, 108, 110, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 180, 186, 192, 198, 200, 204, 210, 216, 220, 222, 228, 234, 240, 246, 252, 258, 260, 264, 270, 272
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

These are the numbers not appearing in A228869; the even numbers not in A226872.
Also, positive integers n such that there exists an odd prime divisor p of n such that (p1) also divides n (cf. A124240).  Max Alekseyev, Sep 07 2013
This sequence agrees with A088723 for many terms, but they are different.


LINKS



MATHEMATICA

Select[Range[100], Mod[2*Sum[PowerMod[k, #, #], {k, #}], #] > 0 &]


PROG

(PARI) is(n)=my(f=factor(n)[, 1]); for(i=1, #f, if(n%(f[i]1)==0 && f[i]>2, return(1))); 0 \\ Charles R Greathouse IV, Dec 28 2016


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



