OFFSET
1,1
COMMENTS
If m is in the sequence then so is k*m for k > 0. Furthermore, all terms are even. - David A. Corneth, Aug 31 2019
If (x,y) = (1,m) with m > 1, then oblong numbers m*(m+1) >= 6 belong to this sequence, and each oblong number >= 6 is a primitive term of the subsequence {k*m*(m+1), k >= 1}. Examples: with pair (1,2), we get multiples of 6 (see A008588); with (1,3) we get multiples of 12 (see A008594); with (1,4) we get multiples of 20 (see A008602); with (1,7) we get multiples of 56. - Bernard Schott, Aug 31 2019
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
A094518(a(n)) > 0.
MATHEMATICA
aQ[n_] := AnyTrue[Total /@ Subsets[Divisors[n], {2}], Divisible[n, #] &]; Select[Range[250], aQ] (* Amiram Eldar, Aug 31 2019 *)
PROG
(PARI) is(n) = {my(d = divisors(n)); for(i = 1, #d - 2, for(j = i + 1, #d - 1, if(n % (d[i] + d[j]) == 0, return(1) ) ) ); 0 } \\ David A. Corneth, Aug 31 2019
(Python)
from itertools import count, islice
from sympy import divisors
def A094519_gen(): # generator of terms
for n in count(1):
for i in range(1, len(d:=divisors(n))):
di = d[i]
for j in range(i):
if n % (di+d[j]) == 0:
yield n
break
else:
continue
break
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 06 2004
STATUS
approved