login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A324652
Numbers k such that A318468(k) (bitwise-AND of 2*k and sigma(k)) is equal to 2*k.
8
6, 12, 18, 20, 24, 28, 36, 40, 48, 56, 80, 88, 96, 100, 104, 112, 160, 176, 192, 196, 200, 204, 208, 220, 224, 260, 264, 272, 304, 320, 336, 352, 368, 384, 392, 416, 448, 464, 496, 544, 550, 580, 608, 640, 648, 650, 672, 704, 736, 768, 784, 832, 896, 928, 992, 1032, 1040, 1044, 1056, 1060, 1068, 1088, 1104, 1120, 1184, 1216
OFFSET
1,1
COMMENTS
Positions of zeros in A324658, fixed points of A324659.
Intersection with A324649 gives A324643.
Intersection with A324726 gives A000396.
In the range 1..2^32 there are only 22 odd terms. See A324647.
MATHEMATICA
Select[Range[2000], 2*# == BitAnd[2*#, DivisorSigma[1, #]] &] (* Paolo Xausa, Mar 11 2024 *)
PROG
(PARI) for(n=1, oo, if((n+n)==bitand(2*n, sigma(n)), print1(n, ", ")))
CROSSREFS
Some subsequences: A000396, A324643, A324647 (the odd terms).
Sequence in context: A007620 A100715 A352030 * A205525 A094519 A088723
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 14 2019
STATUS
approved