login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that A318468(k) (bitwise-AND of 2*k and sigma(k)) is equal to 2*k.
8

%I #29 Mar 11 2024 12:27:23

%S 6,12,18,20,24,28,36,40,48,56,80,88,96,100,104,112,160,176,192,196,

%T 200,204,208,220,224,260,264,272,304,320,336,352,368,384,392,416,448,

%U 464,496,544,550,580,608,640,648,650,672,704,736,768,784,832,896,928,992,1032,1040,1044,1056,1060,1068,1088,1104,1120,1184,1216

%N Numbers k such that A318468(k) (bitwise-AND of 2*k and sigma(k)) is equal to 2*k.

%C Positions of zeros in A324658, fixed points of A324659.

%C Intersection with A324649 gives A324643.

%C Intersection with A324726 gives A000396.

%C In the range 1..2^32 there are only 22 odd terms. See A324647.

%H Antti Karttunen, <a href="/A324652/b324652.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%t Select[Range[2000], 2*# == BitAnd[2*#, DivisorSigma[1, #]] &] (* _Paolo Xausa_, Mar 11 2024 *)

%o (PARI) for(n=1,oo,if((n+n)==bitand(2*n,sigma(n)), print1(n, ", ")))

%Y Cf. A000203, A191218, A318468, A324647, A324649, A324658, A324659, A324722, A324726.

%Y Some subsequences: A000396, A324643, A324647 (the odd terms).

%K nonn

%O 1,1

%A _Antti Karttunen_, Mar 14 2019