login
A324643
Numbers k such that bitand(2k,sigma(k))/2 = k = bitand(k,sigma(k)-k), where bitand is bitwise-AND, A004198.
4
6, 20, 28, 36, 88, 100, 104, 264, 272, 304, 368, 392, 464, 496, 550, 784, 1032, 1040, 1044, 1056, 1068, 1104, 1120, 1184, 1232, 1312, 1376, 1504, 1696, 1888, 1952, 2140, 3222, 4100, 4128, 4160, 4288, 4512, 4544, 4624, 4640, 4672, 5056, 5312, 5696, 6208, 6328, 6464, 6592, 6808, 6848, 6976, 7232, 7304, 8128, 8288, 8968, 9256, 10184
OFFSET
1,1
COMMENTS
Numbers k for which k = A318458(k)/2 = A318468(k).
Intersection of A324649 and A324652.
It is conjectured that there are no odd terms in this sequence, which is equivalent to the conjecture that there are no odd perfect numbers.
Question: Where do the densest clusters of terms occur? See also the scatter plot. - Antti Karttunen, Mar 12 2024
MATHEMATICA
Select[Range[10^4], Block[{s = DivisorSigma[1, #]}, # == BitAnd[#, s-#] && 2*# == BitAnd[2*#, s]] &] (* Paolo Xausa, Mar 11 2024 *)
PROG
(PARI) for(n=1, oo, if( (bitand(n, sigma(n)-n)==n) && (bitand(n+n, sigma(n))==2*n), print1(n, ", ")))
CROSSREFS
Intersection of A324649 and A324652.
Subsequence of A324639.
Sequence in context: A316291 A090502 A324649 * A119425 A342669 A006039
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Mar 14 2019
STATUS
approved