login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324640 Dirichlet inverse of the Doudna sequence, A005940. 2
1, -2, -3, 0, -5, 6, -9, 0, 2, 10, -15, 0, -25, 18, 3, 0, -11, -4, -21, 0, 19, 30, -45, 0, -24, 50, -60, 0, -125, -6, -81, 0, 77, 22, 57, 0, -55, 42, 87, 0, -77, -38, -105, 0, -78, 90, -135, 0, -40, 48, -81, 0, -245, 120, -75, 0, -217, 250, -375, 0, -625, 162, -150, 0, 233, -154, -39, 0, 205, -114, -99, 0, -91, 110, 174, 0, -5, -174, -189, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16384

FORMULA

a(1) = 1; for n > 1, a(n) = -Sum_{d|n, d<n} a(d) * A005940(n/d).

a(p) = -A005940(p) for all primes p.

PROG

(PARI)

up_to = 16384;

DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.

A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940

v324640 = DirInverse(vector(up_to, n, A005940(n)));

A324640(n) = v324640[n];

CROSSREFS

Cf. A005940, A324106, A324641.

Sequence in context: A049268 A291305 A004179 * A122830 A321296 A190902

Adjacent sequences:  A324637 A324638 A324639 * A324641 A324642 A324643

KEYWORD

sign

AUTHOR

Antti Karttunen, Mar 11 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 22:40 EDT 2021. Contains 343909 sequences. (Running on oeis4.)