OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..865
Index entries for linear recurrences with constant coefficients, signature (8,76,136,-38,-136,76,-8,-1).
FORMULA
G.f.: 1 / ( (1+2*x-x^2)^3 * (1-14*x-x^2) ).
G.f.: 1 / Product_{n>=1} (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^A212443(n) where A212443(n) = (1/n)*Sum_{d|n} moebius(n/d)*A002203(d)^2.
a(0)=1, a(1)=8, a(2)=140, a(3)=1864, a(4)=26602, a(5)=373080, a(6)=5253564, a(7)=73911192, a(n) = 8*a(n-1) + 76*a(n-2) + 136*a(n-3) - 38*a(n-4) - 136*a(n-5) + 76*a(n-6) - 8*a(n-7) - a(n-8). - Harvey P. Dale, Feb 15 2015
EXAMPLE
G.f.: A(x) = 1 + 8*x + 140*x^2 + 1864*x^3 + 26602*x^4 + 373080*x^5 + ...
where
log(A(x)) = 2^3*x + 6^3*x^2/2 + 14^3*x^3/3 + 34^3*x^4/4 + 82^3*x^5/5 + 198^3*x^6/6 + 478^3*x^7/7 + 1154^3*x^8/8 + ... + A002203(n)^3*x^n/n + ...
Also, the g.f. equals the infinite product:
A(x) = 1/( (1-2*x-x^2)^4 * (1-6*x^2+x^4)^16 * (1-14*x^3-x^6)^64 * (1-34*x^4+x^8)^280 * (1-82*x^5-x^10)^1344 * (1-198*x^6+x^12)^6496 * ... * (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^A212443(n) * ...).
The exponents in these products begin:
A212443 = [4, 16, 64, 280, 1344, 6496, 32640, 166320, 862400, ...].
The companion Pell numbers begin (at offset 1):
A002203 = [2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, ...].
MATHEMATICA
CoefficientList[Series[1/((1+2x-x^2)^3(1-14x-x^2)), {x, 0, 30}], x] (* or *) LinearRecurrence[{8, 76, 136, -38, -136, 76, -8, -1}, {1, 8, 140, 1864, 26602, 373080, 5253564, 73911192}, 30] (* Harvey P. Dale, Feb 15 2015 *)
PROG
(PARI) /* Subroutine for the PARI programs that follow: */
{A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)), n)}
(PARI) /* G.F. by Definition: */
{a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^3*x^k/k)+x*O(x^n)), n)}
(PARI) /* G.F. as a Finite Product: */
{a(n, m=1)=polcoeff(prod(k=0, m, 1/(1 - (-1)^(m-k)*A002203(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1, m-k)), n)}
(PARI) /* G.F. as an Infinite Product: */
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 17 2012
STATUS
approved