The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224735 G.f.: exp( Sum_{n>=1} binomial(2*n,n)^3 * x^n/n ). 3

%I #3 Apr 16 2013 21:50:53

%S 1,8,140,3616,116542,4316080,175593800,7640774080,349626142909,

%T 16632958651688,816163494236860,41069537125459360,2110206360805542510,

%U 110346590629125981872,5857345961837113457864,314962180518584299711424,17128125582951726423704502,940726748732537798295599280

%N G.f.: exp( Sum_{n>=1} binomial(2*n,n)^3 * x^n/n ).

%F Logarithmic derivative yields A002897.

%e G.f.: A(x) = 1 + 8*x + 140*x^2 + 3616*x^3 + 116542*x^4 + 4316080*x^5 +...

%e where

%e log(A(x)) = 2^3*x + 6^3*x^2/2 + 20^3*x^3/3 + 70^3*x^4/4 + 252^3*x^5/5 + 924^3*x^6/6 + 3432^3*x^7/7 + 12870^3*x^8/8 +...+ A000984(n)^3*x^n/n +...

%o (PARI) {a(n)=polcoeff(exp(sum(k=1,n,binomial(2*k,k)^3*x^k/k)+x*O(x^n)),n)}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A224732, A224734, A224736, A002897, A000984.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Apr 16 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 9 23:59 EDT 2023. Contains 363183 sequences. (Running on oeis4.)