login
A374751
Decimal expansion of the third smallest univoque Pisot number.
4
1, 9, 0, 5, 1, 6, 6, 1, 6, 7, 7, 5, 4, 0, 1, 8, 9, 0, 9, 5, 7, 2, 7, 8, 7, 8, 3, 0, 3, 6, 4, 0, 1, 5, 7, 9, 3, 5, 0, 6, 9, 6, 9, 6, 4, 9, 2, 9, 8, 1, 0, 5, 1, 8, 5, 0, 6, 4, 9, 1, 3, 4, 9, 5, 4, 2, 3, 1, 0, 7, 6, 4, 2, 7, 7, 7, 0, 8, 5, 9, 4, 3, 4, 5, 0, 4, 1, 3, 7, 7
OFFSET
1,2
COMMENTS
This number is denoted by Allouche et al. (2007) as chi. It's the unique Pisot number of degree 4 which is univoque (see Remark 4.1, p. 1646), and the smallest limit point of univoque Pisot numbers (see Theorem 5.3, p. 1651).
LINKS
Jean-Paul Allouche, Christiane Frougny, and Kevin G. Hare, On Univoque Pisot Numbers, Mathematics of Computation, Vol. 76, No. 259, July 2007, pp. 1639-1660 (arXiv version).
Eric Weisstein's World of Mathematics, Pisot Number.
FORMULA
Equals the real root > 1 of x^4 - x^3 - 2*x^2 + 1.
EXAMPLE
1.905166167754018909572787830364015793506969649298...
MATHEMATICA
First[RealDigits[Root[#^4 - #^3 - 2*#^2 + 1 &, 2], 10, 100]]
CROSSREFS
Cf. A127583 (smallest), A374750 (second smallest), A374752.
Sequence in context: A309605 A010770 A021921 * A247718 A154399 A195483
KEYWORD
nonn,cons
AUTHOR
Paolo Xausa, Jul 18 2024
STATUS
approved