login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247718
Decimal expansion of Integral_{0..Pi/2} exp(t)*cos(t) dt.
1
1, 9, 0, 5, 2, 3, 8, 6, 9, 0, 4, 8, 2, 6, 7, 5, 8, 2, 7, 7, 3, 6, 5, 1, 7, 8, 3, 3, 3, 5, 1, 9, 1, 6, 5, 6, 3, 1, 9, 5, 0, 8, 5, 4, 3, 7, 3, 3, 2, 2, 6, 7, 4, 7, 0, 0, 1, 0, 4, 0, 7, 7, 4, 4, 6, 2, 1, 2, 7, 5, 9, 5, 2, 4, 4, 5, 7, 9, 1, 0, 6, 8, 3, 7, 4, 3, 5, 2, 3, 8, 3, 2, 9, 1, 9, 4, 1, 6, 7, 7, 3, 2, 8, 6, 4
OFFSET
1,2
LINKS
D. H. Bailey, J. M. Borwein, Highly Parallel, High-Precision Numerical Integration p. 6. (2005) Lawrence Berkeley National Laboratory.
FORMULA
Equals (A042972 - 1)/2 = A097666 -1/2, where A042972 is exp(Pi/2).
EXAMPLE
1.90523869048267582773651783335191656319508543733226747...
MATHEMATICA
RealDigits[(Exp[Pi/2] - 1)/2, 10, 105] // First
PROG
(PARI) default(realprecision, 100); (exp(Pi/2) -1)/2 \\ G. C. Greubel, Sep 07 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (Exp(Pi(R)/2) - 1)/2; // G. C. Greubel, Sep 07 2018
CROSSREFS
Cf. A042972.
Sequence in context: A010770 A021921 A374751 * A154399 A195483 A093070
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved