Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:46:09
%S 1,9,0,5,2,3,8,6,9,0,4,8,2,6,7,5,8,2,7,7,3,6,5,1,7,8,3,3,3,5,1,9,1,6,
%T 5,6,3,1,9,5,0,8,5,4,3,7,3,3,2,2,6,7,4,7,0,0,1,0,4,0,7,7,4,4,6,2,1,2,
%U 7,5,9,5,2,4,4,5,7,9,1,0,6,8,3,7,4,3,5,2,3,8,3,2,9,1,9,4,1,6,7,7,3,2,8,6,4
%N Decimal expansion of Integral_{0..Pi/2} exp(t)*cos(t) dt.
%H G. C. Greubel, <a href="/A247718/b247718.txt">Table of n, a(n) for n = 1..10000</a>
%H D. H. Bailey, J. M. Borwein, <a href="https://escholarship.org/uc/item/4281090t">Highly Parallel, High-Precision Numerical Integration</a> p. 6. (2005) Lawrence Berkeley National Laboratory.
%F Equals (A042972 - 1)/2 = A097666 -1/2, where A042972 is exp(Pi/2).
%e 1.90523869048267582773651783335191656319508543733226747...
%t RealDigits[(Exp[Pi/2] - 1)/2, 10, 105] // First
%o (PARI) default(realprecision, 100); (exp(Pi/2) -1)/2 \\ _G. C. Greubel_, Sep 07 2018
%o (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (Exp(Pi(R)/2) - 1)/2; // _G. C. Greubel_, Sep 07 2018
%Y Cf. A042972.
%K nonn,cons,easy
%O 1,2
%A _Jean-François Alcover_, Sep 23 2014