login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the third smallest univoque Pisot number.
4

%I #15 Jul 19 2024 02:26:41

%S 1,9,0,5,1,6,6,1,6,7,7,5,4,0,1,8,9,0,9,5,7,2,7,8,7,8,3,0,3,6,4,0,1,5,

%T 7,9,3,5,0,6,9,6,9,6,4,9,2,9,8,1,0,5,1,8,5,0,6,4,9,1,3,4,9,5,4,2,3,1,

%U 0,7,6,4,2,7,7,7,0,8,5,9,4,3,4,5,0,4,1,3,7,7

%N Decimal expansion of the third smallest univoque Pisot number.

%C This number is denoted by Allouche et al. (2007) as chi. It's the unique Pisot number of degree 4 which is univoque (see Remark 4.1, p. 1646), and the smallest limit point of univoque Pisot numbers (see Theorem 5.3, p. 1651).

%H Paolo Xausa, <a href="/A374751/b374751.txt">Table of n, a(n) for n = 1..10000</a>

%H Jean-Paul Allouche, Christiane Frougny, and Kevin G. Hare, <a href="https://doi.org/10.1090/S0025-5718-07-01961-8">On Univoque Pisot Numbers</a>, Mathematics of Computation, Vol. 76, No. 259, July 2007, pp. 1639-1660 (<a href="https://doi.org/10.48550/arXiv.math/0610681">arXiv version</a>).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PisotNumber.html">Pisot Number</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Pisot%E2%80%93Vijayaraghavan_number">Pisot-Vijayaraghavan number</a>.

%H <a href="/index/Al#algebraic">Index entries for algebraic numbers</a>.

%F Equals the real root > 1 of x^4 - x^3 - 2*x^2 + 1.

%e 1.905166167754018909572787830364015793506969649298...

%t First[RealDigits[Root[#^4 - #^3 - 2*#^2 + 1 &, 2], 10, 100]]

%Y Cf. A127583 (smallest), A374750 (second smallest), A374752.

%K nonn,cons

%O 1,2

%A _Paolo Xausa_, Jul 18 2024