login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361064
Multiplicative with a(p^e) = sigma_3(e), where sigma_3 = A001158.
2
1, 1, 1, 9, 1, 1, 1, 28, 9, 1, 1, 9, 1, 1, 1, 73, 1, 9, 1, 9, 1, 1, 1, 28, 9, 1, 28, 9, 1, 1, 1, 126, 1, 1, 1, 81, 1, 1, 1, 28, 1, 1, 1, 9, 9, 1, 1, 73, 9, 9, 1, 9, 1, 28, 1, 28, 1, 1, 1, 9, 1, 1, 9, 252, 1, 1, 1, 9, 1, 1, 1, 252, 1, 1, 9, 9, 1, 1, 1, 73, 73, 1, 1, 9
OFFSET
1,4
LINKS
FORMULA
Dirichlet g.f.: Product_{primes p} (1 + Sum_{e>=1} sigma_3(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma_3(e) - sigma_3(e-1)) / p^e) = 136.775196585091127831467103699999450735835551529525277016916082455332230986...
MATHEMATICA
g[p_, e_] := DivisorSigma[3, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
PROG
(Python)
from math import prod
from sympy import factorint, divisor_sigma
def A361064(n): return prod(divisor_sigma(e, 3) for e in factorint(n).values()) # Chai Wah Wu, Mar 01 2023
(PARI) a(n) = vecprod(apply(x -> sigma(x, 3), factor(n)[, 2])); \\ Amiram Eldar, Jan 07 2025
CROSSREFS
KEYWORD
nonn,mult,changed
AUTHOR
Vaclav Kotesovec, Mar 01 2023
STATUS
approved