login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114289
Number of combinatorial types of n-dimensional polytopes with n+3 vertices.
2
0, 1, 7, 31, 116, 379, 1133, 3210, 8803, 23701, 63239, 168287, 447905, 1194814, 3196180, 8576505, 23081668, 62292381, 168536249, 457035453, 1241954405, 3381289332, 9221603416, 25189382006, 68906572413, 188750887991
OFFSET
1,3
REFERENCES
B. Grünbaum, Convex Polytopes, Springer-Verlag, 2003, Second edition prepared by V. Kaibel, V. Klee and G. M. Ziegler, p. 121a.
LINKS
Lukas Finschi, A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids, A dissertation submitted to the Swiss Federal Institute of Technology, Zurich for the degree of Doctor of Mathematics, 2001. See Table 7.5.
Éric Fusy, Counting d-polytopes with d+3 vertices, arXiv:math/0511466 [math.CO], 2005.
Éric Fusy, Counting d-polytopes with d+3 vertices, Electron. J. Comb. 13 (2006), no. 1, research paper R23, 25 pp.
E. K. Lloyd, The number of d-polytopes with d+3 vertices, Mathematika 17 (1970), 120-132.
Aleksandr Maksimenko, 2-neighborly 0/1-polytopes of dimension 7, arXiv:1904.03638 [math.CO], 2019.
MAPLE
N:=60: with(numtheory): G:=-ln(1-2*x^3/(1-2*x)^2): H:=-ln(1-2*x)+ln(1-x): K:=-1/2*x*(x-8*x^3-1+5*x^2-7*x^4+2*x^6+5*x^8-9*x^7+19*x^5-14*x^9+x^10+19*x^11-5*x^12+4*x^14-8*x^13)/(1-x)^5/(2*x^6-4*x^4+4*x^2-1)/(x+1)^2: series(1/(x^3-x^4)*(1/4*sum(phi(2*r+1)/(2*r+1)*subs(x=x^(2*r+1), G), r=0..N)+1/2*sum(phi(r)/r*subs(x=x^r, H), r=1..N)+K), x, N);
MATHEMATICA
terms = 26;
G[x_] = -Log[1 - 2(x^3/(1 - 2x)^2)];
H[x_] = -Log[1 - 2x] + Log[1 - x];
K[x_] = -1/2 x (x - 8x^3 - 1 + 5x^2 - 7x^4 + 2x^6 + 5x^8 - 9x^7 + 19x^5 - 14x^9 + x^10 + 19x^11 - 5x^12 + 4x^14 - 8x^13)/(1-x)^5/(2x^6 - 4x^4 + 4x^2 - 1)/(x+1)^2;
1/(x^3 - x^4) (1/4 Sum[EulerPhi[2r + 1]/(2r + 1) G[x^(2r + 1)], {r, 0, terms+2}] + 1/2 Sum[EulerPhi[r]/r H[x^r], {r, 1, terms+2}] + K[x]) + O[x]^(terms+2) // CoefficientList[#, x]& // Rest // Most // Round (* Jean-François Alcover, Dec 14 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Éric Fusy (eric.fusy(AT)inria.fr), Nov 21 2005
STATUS
approved