login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181951
Number of cyclic subgroups of prime order in the Alternating Group A_n.
4
0, 0, 1, 7, 31, 121, 526, 2227, 9283, 54931, 694156, 6104011, 76333687, 872550043, 7491293356, 49469173951, 1571562887071, 24729107440927, 584036983443568, 8662243014551731, 87570785839885951, 1147293350653737211, 66175018194591458692, 1378758190497550145383
OFFSET
1,4
LINKS
FORMULA
a(n) = A186202(n) - A001465(n). - Andrew Howroyd, Jul 04 2018
MATHEMATICA
a[n_] := Sum[If[PrimeQ[p], Sum[If[p > 2 || Mod[k, 2] == 0, n!/(k!*(n - k*p)!*p^k)/(p - 1), 0], {k, 1, n/p}], 0], {p, 2, n}];
Array[a, 24] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
PROG
(PARI) a(n)={sum(p=2, n, if(isprime(p), sum(k=1, n\p, if(p>2||k%2==0, n!/(k!*(n-k*p)!*p^k)))/(p-1)))}
CROSSREFS
Cf. A001465, A181955, A186202 (symmetric group).
Sequence in context: A114289 A147597 A048775 * A218963 A125193 A002184
KEYWORD
nonn
AUTHOR
Olivier Gérard, Apr 03 2012
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Jul 04 2018
STATUS
approved