The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114291 Number of combinatorial types of achiral n-dimensional polytopes with n+3 vertices, where a polytope is achiral if one of its geometric realizations has a reflection-symmetry. 2
 0, 1, 7, 24, 62, 141, 287, 561, 1035, 1886, 3319, 5838, 10030, 17323, 29395, 50291, 84795, 144374, 242641, 412126, 691522, 1173151, 1966929, 3334931, 5589311, 9474106, 15875699, 26906538, 45083426, 76404103, 128014623, 216944163 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 REFERENCES B. Grünbaum, Convex Polytopes, Springer-Verlag, 2003, Second edition prepared by V. Kaibel, V. Klee and G. M. Ziegler, p. 121a. LINKS Éric Fusy, Counting d-polytopes with d+3 vertices, arXiv:math/0511466 [math.CO], 2005. Éric Fusy, Counting d-polytopes with d+3 vertices, Electron. J. Comb. 13 (2006), no. 1, research paper R23, 25 pp. E. K. Lloyd, The number of d-polytopes with d+3 vertices, Mathematika 17 (1970), 120-132. FORMULA G.f.: (2*x^11+4*x^10-2*x^9-15*x^8-5*x^7+23*x^6+15*x^5-17*x^4 -14*x^3 +4*x^2+5*x+1) *x^2 / ((-1+x)^5*(2*x^6-4*x^4+4*x^2-1)*(x+1)^3). MATHEMATICA LinearRecurrence[{2, 6, -14, -12, 38, 8, -54, 5, 44, -12, -20, 8, 4, -2}, {0, 1, 7, 24, 62, 141, 287, 561, 1035, 1886, 3319, 5838, 10030, 17323}, 32] (* Jean-François Alcover, Dec 14 2018 *) PROG (PARI) concat(0, Vec((2*x^11+4*x^10-2*x^9-15*x^8-5*x^7+23*x^6+15*x^5 -17*x^4-14*x^3+4*x^2 +5*x+1)*x^2/ (-1+x)^5/(2*x^6-4*x^4+4*x^2-1)/(x+1)^3 + O(x^50))) \\ Michel Marcus, Dec 12 2014 CROSSREFS Cf. A000943, A114289, A114290. Sequence in context: A014205 A002969 A029585 * A211382 A217746 A211381 Adjacent sequences:  A114288 A114289 A114290 * A114292 A114293 A114294 KEYWORD nonn AUTHOR Éric Fusy (eric.fusy(AT)inria.fr), Nov 21 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 14:10 EST 2021. Contains 349430 sequences. (Running on oeis4.)